Nonlinear stationary solutions of the Wigner and Wigner–Poisson equations
نویسندگان
چکیده
منابع مشابه
existence and approximate $l^{p}$ and continuous solution of nonlinear integral equations of the hammerstein and volterra types
بسیاری از پدیده ها در جهان ما اساساً غیرخطی هستند، و توسط معادلات غیرخطی بیان شده اند. از آنجا که ظهور کامپیوترهای رقمی با عملکرد بالا، حل مسایل خطی را آسان تر می کند. با این حال، به طور کلی به دست آوردن جوابهای دقیق از مسایل غیرخطی دشوار است. روش عددی، به طور کلی محاسبه پیچیده مسایل غیرخطی را اداره می کند. با این حال، دادن نقاط به یک منحنی و به دست آوردن منحنی کامل که اغلب پرهزینه و ...
15 صفحه اولDynamic Instability of Stationary Solutions to the Nonlinear Vlasov Equations
We present the dynamic instability of smooth compactly supported stationary solutions to the nonlinear Vlasov equations with self-consistent attractive forces. For this, we explicitly construct a one-parameter family of perturbed solutions via the method of the Galilean boost. Initially, these perturbations can be close to the given stationary solution as much as possible in any L-norm, p ∈ [1,...
متن کاملTopological soliton solutions of the some nonlinear partial differential equations
In this paper, we obtained the 1-soliton solutions of the symmetric regularized long wave (SRLW) equation and the (3+1)-dimensional shallow water wave equations. Solitary wave ansatz method is used to carry out the integration of the equations and obtain topological soliton solutions The physical parameters in the soliton solutions are obtained as functions of the dependent coefficients. Note t...
متن کاملStationary and Periodic Solutions of Differential Equations
A stochastic process ξ(t) = ξ(t,ω) (−∞ < t < ∞) with values in R is said to be stationary (in the strict sense) if for every finite sequence of numbers t1, . . . , tn the joint distribution of the random variables ξ(t1 + h), . . . , ξ(tn + h) is independent of h. If we replace the arbitrary number h by a multiple of a fixed number θ , h= kθ (k =±1,±2, . . . ), we get the definition of a periodi...
متن کاملStationary solutions, blow up and convergence to stationary solutions for semilinear parabolic equations with nonlinear boundary conditions
Unspecified Posted at the Zurich Open Repository and Archive, University of Zurich ZORA URL: http://doi.org/10.5167/uzh-22758 Originally published at: Chipot, M; Fila, M; Quittner, P (1991). Stationary solutions, blow up and convergence to stationary solutions for semilinear parabolic equations with nonlinear boundary conditions. Acta Mathematica Universitatis Comenianae. New Series, 60(1):35-1...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physics of Plasmas
سال: 2008
ISSN: 1070-664X,1089-7674
DOI: 10.1063/1.3008047